The Predictability of Lowland Snow in the Pacific Northwest

Dale Durran¹, P. Alex Reinecke², James Doyle²

¹University of Washington, Seattle, WA ²Naval Research Laboratory, Monterey, CA

29 February 2012

Lorenz: Time for Errors to Propagate Upscale

1 hour to 20 km, 1 day to 1,250 km

Lorenz, 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289-307.

The Question

Beyond what lead time is the deterministic forecasting of snow in the Puget-Sound lowlands handicapped by initial condition uncertainty?

The Question

Beyond what lead time is the deterministic forecasting of snow in the Puget-Sound lowlands handicapped by initial condition uncertainty?

• Focus on the growth of initial perturbations.

The Question

Beyond what lead time is the deterministic forecasting of snow in the Puget-Sound lowlands handicapped by initial condition uncertainty?

- Focus on the growth of initial perturbations.
- Ignore model errors

Ensemble Implementation

- Two cases from 2008:
 - 12-13 December
 - 17-18 December

COAMPS (1-way nest)

 $\Delta x = 36$ - and 12-km

Ensemble Implementation

- Two cases from 2008:
 - 12-13 December
 - 17-18 December
- Developing short waves in NW flow.

COAMPS (1-way nest)

 $\Delta x = 36$ - and 12-km

Ensemble Implementation

- Two cases from 2008:
 - 12-13 December
 - 17-18 December
- Developing short waves in NW flow.
- 100-member EnKF ensemble

COAMPS (1-way nest)

 $\Delta x = 36$ - and 12-km

Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:

• Presence of precipitation.

Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:

- Presence of precipitation.
- 850-mb temperature: "Sharp rain-snow transition between about -4° and -8° C"† (4° spread)

†Ferber et al., 1993; Snowstorms over the Puget Sound Low-Lands Wea, Forecasting

Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:

- Presence of precipitation.
- 850-mb temperature: "Sharp rain-snow transition between about -4° and -8°C"† (4° spread)
- Sidestep sensitivities to
 - Ice microphysical parameterizations
 - Boundary layer parameterizations

†Ferber et al., 1993: Snowstorms over the Puget Sound Low-Lands Wea. Forecasting

Ranking the Ensemble Members

Rank by average 850-hPa temperature over red box at 12 UTC, 13

December 2008

- Warm sextile contains 17 warmest members
- Cold sextile contains 17 coldest

Temperature Metric at Various Lead Times

- Whiskers → outer sextiles.
- Increased uncertainty with longer lead times.

Temperature Metric at Various Lead Times

SLP and 24-hr Accumulated Precipitation

Temperature Weighted Precipitation

Temperature Metric at Various Lead Times

SLP and 850 hPa Temperature (36-hr Forecast)

Temperature Weighted Precipitation

Summary

- Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours
 - Climatological rain-snow transition over 4°C range.
 - Case 1: Range between cold and warm sextile means is 6°C.
 - Case 2: Range between cold and warm sextile means is 9°C.

Summary

- Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours
 - Climatological rain-snow transition over 4°C range.
 - Case 1: Range between cold and warm sextile means is 6°C.
 - Case 2: Range between cold and warm sextile means is 9°C.
- Substantial differences in synoptic-scale pattern at 36 hours
 - Case 1: Position of low centers differ by more than 400 km.
 - Case 2: Position of low centers differ by more than 800 km.

Summary

- Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours
 - Climatological rain-snow transition over 4°C range.
 - Case 1: Range between cold and warm sextile means is 6°C.
 - Case 2: Range between cold and warm sextile means is 9°C.
- Substantial differences in synoptic-scale pattern at 36 hours
 - Case 1: Position of low centers differ by more than 400 km.
 - Case 2: Position of low centers differ by more than 800 km.
- More pessimistic than Zhang et al., 2002, 2003
 - Significant differences in surface pressure pattern at 36 hours.
 - Error growth likely not dependent on moist convection.

Why does the error grow so fast?

Nontrivial initial errors at large scales.

Why does the error grow so fast?

- Nontrivial initial errors at large scales.
- Downscale error growth is very rapid†

Conclusion

 A theoretical limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).

Conclusion

- A theoretical limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).
- The *practical* limit to mesoscale predictability can be imposed by unavoidable initial errors in the large scales.

Conclusion

- A theoretical limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).
- The practical limit to mesoscale predictability can be imposed by unavoidable initial errors in the large scales.

The large scale giveth and the large scale taketh away.

Initial Conditions: Case 1

Initial Conditions: Case 2

